>However you will always be several years behind the current state of art
I agree with your post, but 99.9% of people who will be applying ML via black-box algorithm in the next decade won't be participating in, or at all concerned with, the state-of-the-art. In the same way that most of us aren't concerned about state-of-the-art chip design.
I can do a regression analysis with a couple clicks in excel. I need little knowledge beyond how to interpret results. Sure, the underlying data might violate some assumptions, but it's rare (and there are tools for that). And let's face it, the most popular applications by amateurs will be marketing related, not cancer-curing related.
Actually a regression analysis is a great example of something people often use incorrectly.
I have a degree in stats and someone at work who is self taught from a 'use the tools' perspective was trying to use these frameworks to analyse some log file patterns. When I had a look at it, his results were showing that they were statistically significant, but the data didn't look anything like a linear relationship and fitting it to a regression wasn't a valid move. That's a simplistic example but even in the relatively simple realm of linear regression there are more difficult traps to spot, like heterostedasticity or error normality.
But nothing you've said is complicated enough that in can't be explained through simple instructions or conquered through better tools. This is besides the fact that a little bias in the estimation isn't the end of the world if you're only trying to figure out who clicks ads, and not doing medical research.
Believe me, I run into the same issues as well, having to state "You can't do that..." when I watch co-workers try to apply even simple tests. I just think we draw the cut-off line at different skill-levels.
Basically: "instructions", that become more simple over time. There are some nuances to, say, R^2. But the concept that it's "how much variance is explained by the model" isn't difficult to comprehend...or apply.
Let me clarify that I'm not saying it's unimportant to understand the underlying mathematics behind these processes. After all, someone has to design these things so that the layman can actually apply them. What I, and it seems others, are arguing is that it isn't necessary to have a deep understanding of the algorithms to get insight from their usage. Some creative person creates the tool, and other creative people figure out its best uses. They are rarely the same people.
I'll add: I'm not sure why you're down-voted. This community seems to be developing those bad habits of disagree = down vote.
That's a good point, there has to be a line drawn at some point, and that line probably depends on the user. It seems like documentation and communication are important for making making that boundary a bit softer too. E.g. looking at the mathematical definition of R2 isn't as immediately clear as describing it as "variance explained".
I agree with your post, but 99.9% of people who will be applying ML via black-box algorithm in the next decade won't be participating in, or at all concerned with, the state-of-the-art. In the same way that most of us aren't concerned about state-of-the-art chip design.
I can do a regression analysis with a couple clicks in excel. I need little knowledge beyond how to interpret results. Sure, the underlying data might violate some assumptions, but it's rare (and there are tools for that). And let's face it, the most popular applications by amateurs will be marketing related, not cancer-curing related.