It is good to see someone actually testing the power-loss protection claims made by manufacturers.
However, uninterruptible power supplies are usually a better investment than power-loss resilient storage media. The problem is, even if your SSD or hard drive behaves perfectly during a power-loss scenario, your server software may not. Almost every database, filesystem, etc. includes some amount of buffering in memory, because sending every write directly to disk is a performance killer.
Also, the best-case scenario with power-loss resilient media is that your system shuts down cleanly. With a UPS, you can keep the system up until diesel generators kick in, a much better endgame for everybody.
I once asked someone who had worked in the hard drive business what a hard drive would do when power was lost. "Try to park the drive head immediately before it crashes on to the platter," was the immediate response. Trying to flush the cache contents wasn't even remotely on his mind. In practice, losing power while writing to a hard disk does often corrupt sectors-- even sectors that weren't being written to during the power loss incident.
It's good to see that (some) SSDs are at least trying to flush the cache, but you really have to ask yourself: can you really trust the manufacturer's claims? And if you can trust them, can you trust your specific software configuration under this unusual scenario? I think it's just too long a frontier to guard with too few sheriffs. Dude, you're getting a UPS.
The problem of SSDs, as others have mentioned here, is that writing during power loss can have more important effects: it can overwrite firmware bits or mapping bits. In the first case the whole SSD is dead, in the second case, much more data than the one currently written is lost.
My impression was that even cheap SSDs should have ultracapacitors or small batteries that allow them to survive a power loss event without being bricked. Of course, the stuff in the cache is lost at that point, but that's no worse than the situation with a hard drive. Also, as I mentioned, "much more data than the one currently written" can be lost when power fails in a hard drive. So the situation is really no different, unless the manufacturer screwed up.
Spinning disks have enough rotational momentum to keep spinning (which keeps the heads floating) for long enough to park the heads via a weak spring, with zero electricity. A head crash doesn't corrupt a few sectors so much as cause catastrphic damage - that disk would likely never read another sector again. Properly-functionioning spinning disks haven't had issues with random data loss on power failure for at least a decade now.
And your impression of cheap SSDs is dead, flat wrong. They're cheap - every unnecessary part is left off to save money. And we've all (all of us who pay attention) known for years that SSDs (even some with power fail protection) will lose data (even bits which it has reported to have sync'd) on power loss.
A UPS is not enough, if you need to have your data, you need multiple layers of backup, and an SSD must have some method of writing out voltatile data (mostly internal metadata, not cache) before it shuts down.
Properly-functionioning spinning disks haven't had issues with random data loss on power failure for at least a decade now.
Source?
And your impression of cheap SSDs is dead, flat wrong. They're cheap - every unnecessary part is left off to save money. And we've all (all of us who pay attention) known for years that SSDs (even some with power fail protection) will lose data (even bits which it has reported to have sync'd) on power loss.
I think you misread what I wrote. I wrote that I would expect cheap SSDs to "survive a power loss event without being bricked." I did not write that they would retain all data, which seems to be what you are arguing against.
I have heard rumors that some cheap SSDs do not honor the SATA SYNC command. Unfortunately I do not have a reliable source for this theory, do you?
A UPS is not enough, if you need to have your data, you need multiple layers of backup, and an SSD must have some method of writing out voltatile data (mostly internal metadata, not cache) before it shuts down.
I don't think anyone is arguing that a UPS is a replacement for backups.
However, uninterruptible power supplies are usually a better investment than power-loss resilient storage media. The problem is, even if your SSD or hard drive behaves perfectly during a power-loss scenario, your server software may not. Almost every database, filesystem, etc. includes some amount of buffering in memory, because sending every write directly to disk is a performance killer.
Also, the best-case scenario with power-loss resilient media is that your system shuts down cleanly. With a UPS, you can keep the system up until diesel generators kick in, a much better endgame for everybody.
I once asked someone who had worked in the hard drive business what a hard drive would do when power was lost. "Try to park the drive head immediately before it crashes on to the platter," was the immediate response. Trying to flush the cache contents wasn't even remotely on his mind. In practice, losing power while writing to a hard disk does often corrupt sectors-- even sectors that weren't being written to during the power loss incident.
It's good to see that (some) SSDs are at least trying to flush the cache, but you really have to ask yourself: can you really trust the manufacturer's claims? And if you can trust them, can you trust your specific software configuration under this unusual scenario? I think it's just too long a frontier to guard with too few sheriffs. Dude, you're getting a UPS.