Hacker News new | past | comments | ask | show | jobs | submit login

What if I have thousands of disks deployed, and I suffer a single power loss? What are the chances that at least one disk will contain corrupt data after such an event?

Instead of buying thousands of disks to test this scenario, one reasonable shortcut might be to repeatedly test a single disk.

Even a spinning disk can handle a few thousand power cycles in its lifetime, surely?




On power up, there's a pretty big spike in power usage as the controller gets its shit together. Normally, this is not an issue, since the SSD housing simply absorbs the heat and then goes about its business. The same holds true for spindle drives.

What this guy did was test the drives in a manner they weren't designed for. Sure, I can drop Corvettes off a 20 story building, then bitch about the results, but that wouldn't change the fact that my test was flawed from the onset.

All he did was subject something to an environment is wasn't designed for.

Sure, I can drop a Corvette from a 20 story building, but there's nothing to be gained when the crumple zone is packed into the tail lights.


Hu? Where should that spike in power usage come from?


It comes from the decoupling/filter capacitors used in the DC power circuit. When the power is turned on after a sufficiently long time these capacitors are all uncharged and appear as "shorts" to the power source thus drawing large amounts of current. This initial surge current drops off as the capacitors get charged.


Filter capacitors producing excessive heat due to inrush current? That would be bad filter capacitors indeed ;-)

The claim was that an SSD somehow converted more electric energy into heat immediately after power-up which would damage the SSD, so real consumption, not just a current peak that goes into storage for later consumption. Normal-ESR electrolytics might have a heat problem when used at a few kHz in switching applications, but certainly not at 0.1 Hz.


It's long been standard practice with tantalum filter capacitors to feed them through an inductor or at least a resistor to prevent inrush current failures. That, and/or you derate the crap out of them when you design the board. Newer drives are probably using multilayer ceramics that can put up with just about any abuse including inrush.

Executive summary: powerup stress is not an issue unless the drive was designed by a moron.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: