While I agree with your general assessment, I think your conclusion is a bit off. You’re assuming 1kw/m^2, which is only true with the sun directly overhead. A real-world solar setup gets hit with several factors of cosine (related to roof pitch, time of day, day of year, and latitude) that conspire to reduce the total output.
For example, my 50 sq m set up, at -29 deg latitude, generated your estimated 30 kwh/day output. I have panels with ~20% efficiency, suggesting that at 60% efficiency, the average household would only get to around half their energy needs with 10 sq m.
Yes, solar has the potential to drastically reduce energy costs, but even with free energy storage, individual households aren’t likely to achieve self sustainability.
For example, my 50 sq m set up, at -29 deg latitude, generated your estimated 30 kwh/day output. I have panels with ~20% efficiency, suggesting that at 60% efficiency, the average household would only get to around half their energy needs with 10 sq m.
Yes, solar has the potential to drastically reduce energy costs, but even with free energy storage, individual households aren’t likely to achieve self sustainability.