Cognitive Search is nowhere as good as a 'pure' vector DB. Behind the scenes, it's a managed elasticsearch/opensearch with some vector search capabilities. The 'AI' implementations I've done with Cognitive Search always boil down to hybrid(vector+fts) text search.
In context of RAG, the goal is not to have a pure vector DB but to have all the relevant data that we can gather for a user's prompt. This is where Cognitive Search and other existing DBs shine because they offer a combination of search strategies. Hybrid search on Cognitive Search performs both full text and vector queries in parallel and merges results which I find a better approach. Further, MS is rebranding Cognitive Search as Azure AI Search to bring it more in line with the overall Azure AI stack including Azure OpenAI.
Cognitive Search already contains hybrid search (vector + BM25 + custom ML reranking) and they use chunks of 2048 tokens with a custom tokenizer. So it should be now better than most vector DBs. One could probably make something better by using some version of SPLADE instead of BM25 but their secret sauce lies in their custom ML model for reranking that gives them the largest search performance boost.
They are also a Rust shop.
Who says Germany has no cool startups.
EDIT: Yes, it was Grok.