Of course proofs can be still correct, it's just that we cannot cope with infinites very well without talking about computational limits.
My argument was hyperbolic, I regret, but it was less about what's incorrect and more about what's incomplete. The aspirations of early mathematicians was to discover a platonic ideal. Instead of that we only got useful tools that are always* up for re-interpretation depending on context.
An example of this is that Euclid's fifth postulate, which be consistent with many other interpretations of geometry too, not just the single one originally intended. It turned into a tool of formal scaffolding instead of an omnipotent "truth". Going from absolute to relative in power.
*In cases where they involve infinites. Including simple expressions like "take N to be an integer"
Of course proofs can be still correct, it's just that we cannot cope with infinites very well without talking about computational limits.
My argument was hyperbolic, I regret, but it was less about what's incorrect and more about what's incomplete. The aspirations of early mathematicians was to discover a platonic ideal. Instead of that we only got useful tools that are always* up for re-interpretation depending on context.
An example of this is that Euclid's fifth postulate, which be consistent with many other interpretations of geometry too, not just the single one originally intended. It turned into a tool of formal scaffolding instead of an omnipotent "truth". Going from absolute to relative in power.
*In cases where they involve infinites. Including simple expressions like "take N to be an integer"