I think they're a cool company and I even thought about applying. However the limiting factor here isn't the implant technology. Lots of groups have been building really great stuff for years (groups around the world have been recording from neurons in living animals for decades). The issue is there are ethical implications for performing such an invasive brain surgery on a healthy person. Right now the limit factor is finding suitable candidates.
The ECoG implants are usually done to pinpoint where seizers start in the brain. The surgeons already have a good idea of the rough area from EEG but to zero in on the exact locus they need ECoG.
So to find a candidate for a study you need someone who has epilepsy, their epilepsy needs to be bad enough to merit brain surgery, and the epileptic center cannot be the brain region you care about but it needs to be close enough to your target region that the same ECoG will cover both brain areas.
So again I'm all for pushing this science forward. The more we learn about how the brain works the more we'll understand what makes us human. However, this isn't a technology problem right now. Its an ethical and medical one.
> However, the limiting factor here isn't the implant technology. [...] The issue is there are ethical implications for performing such an invasive brain surgery on a healthy person.
That sounds like a limitation of the implant technology to me. The reason there are ethical problems with performing invasive brain surgery on a healthy person is because the risks and downsides of currently available implant technology are significant. If getting a brain implant were as cheap, easy, and safe as getting a tattoo, the ethical problem would be largely solved.
There are quite a few ethical problems. On the reading side, there is interrogation (of suspected spies or terrorists), which is already decades underway with fMRI, and brainjacking (a keylogger for your thoughts). As for deep brain stimulation, this is researched to create fearless soldiers, change sexuality, extremely painful torture, radio control movements, and alter emotional states.
Even for patients who suffer from severe health conditions such as OCD, depression, or tremors, the treatment can be very disruptive and emotional well-being may decrease, even with successful treatment of the condition (the doctor is happy, the patient less so).
The dual use possibilities of this technology are extremely scary, and the involvement of Facebook (supposedly for VR) and DARPA (supposedly to treat anxiety and PTSD in soldiers) does not bode too well.
Got some references for "decades" of fMRI interrogation (or, really, anything else)?
As far as I know, decoding is challenging with totally cooperative subjects doing simple tasks. Wiggling just a few mm is enough to completely destroy a run.
The Legality of the Use of Psychiatric Neuroimaging in Intelligence Interrogation (2005)
> For example, an interrogator could present a detainee with pictures of suspected terrorists, or of potential terrorist targets, which would generate certain neural responses if the detainee were familiar with the subjects pictured. U.S. intelligence agencies have been interested in deploying fMRI technology in interrogation for years. It now appears that they can.
Zero-Shot Learning with Semantic Output Codes (2009)
> As a case study, we build a SOC classifier for a neural decoding task and show that it can often predict words that people are thinking about from functional magnetic resonance images (fMRI) of their neural activity, even without training examples for those words.
Anecdotal hearsay: I first heard of a brain reading helmet able to successfully reconstruct a numerical password on subjects where the helmet was not trained on (but who consciously had to think about the keycode) in 2001. I also heard this technology was used extensively in Guantanamo Bay and black sites, possibly as a cheap trick to intimidate prisoners into speaking the truth / making them visibly anxious to lie, such tricks dating back to the world wars where they used sedatives and/or uppers disguised as "truth serums", and even the threat of administering these caused subjects to crack.
As for unethical deep brain stimulation research see:
> Dr Heath's work on mind-control at Tulane was partly funded by the US military and the CIA. Dr Heath's subjects were African Americans. In the words of Heath's collaborator Australian psychiatrist Harry Bailey, this was "because they were everywhere and cheap experimental animals". Following the discovery by Olds and Milner of the "pleasure centres" of the brain [James Olds and Peter Milner, "Positive Reinforcement Produced by Electrical Stimulation of the Septal Area and Other Regions of the Rat Brain," Journal of Comparative and Physiological Psychology 47 (1954): 419-28.], Dr Heath was the main speaker at a seminar conducted by the Army Chemical Corps at its Edgewood Arsenal medical laboratories. Dr Heath's topic was "Some Aspects of Electrical Stimulation and Recording in the Brain of Man." Details of Dr Heath's own involvement in the MK-ULTRA project remain unclear; but Tulane University continues to enjoy close ties with the CIA. Dr Heath also conducted numerous experiments with mescaline, LSD and cannabis.
None of your references say that anyone has used fMRI for interrogation, let alone for decades. At most, your first two links say that the CIA and DoD respectively are interested in using fMRI for lie detection, but that's not necessarily the same as interrogation (both agencies currently use polygraphs extensively on their own employees, a case where the subject would be cooperative), and they don't say the agencies have actually put that idea into practice. Your third link cites the first one and does suggest that using fMRI for interrogation is possible, but doesn't say whether anyone has done it. Your fourth link does not mention the government or interrogation. The other two links are not about fMRI.
So we're left with the anecdotal hearsay, which might well be true, but even if true, doesn't really show that fMRI was effective against prisoners beyond its use as a psychological trick.
I feel you are splitting hairs here. Lie detection is necessarily a part of interrogation. The references say they can do this, and have been interested in doing it, so why wouldn't they be using it? The nature of intelligence agencies demands a certain degree of secrecy/anonymity and conjecture. One author of the fourth paper, though never directly researching military or government applications, moved from the U.S. to Canada in large part due to the appropriation and funding from the military for his research.
> Brain scan by MRI/CAT scan with contrast along with EEG tests by doctors now used to screen terrorists like I suggested a long time back. Massive brain electrical activity if key words are spoken during scans. The use of the word SEMTEX provided massive brain disturbance. Process developed by NeuroPsychologists at London’s University College and Mossad. Great results. That way we only apply intensive interrogation techniques to the ones that show reactions to key words given both in English and in their own language.
[Military interrogation takes two forms, Tactical Questioning or Detailed Interviewing. Tactical Questioning is the initial screening of detainees, Detailed Interviewing is the more advanced questioning of subjects.]
Note that I did not even make the stronger claim of decades of applied usage -- that you are making me defend and invalidate my references with -- just that it was decades underway. But above quote should satisfy even that.
On purely technical grounds, I'm a little suspicious of that quote.
CT scans don't tell you anything about brain function (they're structural), nor do the sort of MRIs that do tell you about brain function tend not to use contrast agents. People have used iron oxide to measure changes in cerebral blood volume, but it swamps the BOLD signal that's usually used to read out task-related activity.
On the other hand, I can imagine that you could figure out if a non-cooperative subject knew the word "SEMTEX" was actually a word with an oddball paradigm. Not sure how much that really helps but...
Heh, this conversation moved the goalpost so far that it ended up at the beginning. A needless detour. You are right about being skeptical if any of this decade underway technology actually works and this causing ethical problems. Good day.
> The references say they can do this, and have been interested in doing it, so why wouldn't they be using it?
I'm not trying to split hairs. It is possible that, despite the interest, the technology isn't at a state where it would actually be useful in practice. However, your new citation is stronger.
The errors and bias in these systems add to the ethical concerns. While it is arguably a good thing to substitute torture with brain image interrogation, there is a risk of putting too much trust in these systems, subjecting innocents to days of leading investigation, just because the computer said there is something to be found there.
Israeli airport security (arguably the best in the world) deploys derivatives of these systems, that look at micro-gestures, elevation of heart rates, pupil dilation, and temperature changes, to see if passengers respond with familiarity to terrorist imagery flashed on a screen as they walk by it. If that already works in practice, imagine the same, but being strapped with hundreds of sensors.
See also the 2010 research on image reconstruction from brain activity, and extrapolate that 10 years in the future and applied to military interrogation: https://www.youtube.com/watch?v=nsjDnYxJ0bo
I would consider those to be ethical problems with specific applications of brain-machine interface technology, not with the implantation process itself.
> If getting a brain implant were as cheap, easy, and safe as getting a tattoo, the ethical problem would be largely solved.
But how realistic is that?
Your brain is a vital organ. It's encased in a hard skull. There is very little margin for error.
It just doesn't strike me as the sort of procedure that could ever be made as cheap, easy, and safe as getting a tattoo -- at least not in our lifetime.
I intentionally picked an extreme example to illustrate my point, which is that most of the ethical concerns with giving people brain implants are function of the drawbacks of currently available implantation technology; not fundamental issues with the concept itself.
Obviously we won't be getting things quite to the level of cost and safety as tattoos anytime in the near future. Even Elon Musk's goal with Neuralink is somewhat less ambitious; he only wants it to be as safe and convenient as LASIK.
The ECoG implants are usually done to pinpoint where seizers start in the brain. The surgeons already have a good idea of the rough area from EEG but to zero in on the exact locus they need ECoG.
So to find a candidate for a study you need someone who has epilepsy, their epilepsy needs to be bad enough to merit brain surgery, and the epileptic center cannot be the brain region you care about but it needs to be close enough to your target region that the same ECoG will cover both brain areas.
So again I'm all for pushing this science forward. The more we learn about how the brain works the more we'll understand what makes us human. However, this isn't a technology problem right now. Its an ethical and medical one.