I wonder when the rapid erosion of Intel's technical lead in fabrication technology be represented in decreasing evaluation of its market cap.
It was rumored TSMC's 7nm wouldn't be the same as Intel's 10nm. But if they reach ~5nm then they'll likely be knocking on Intel's 10nm door. Combined with the double whammy of 7nm Eypc servers from AMD it seems like Intel's technical offerings are rapidly getting commoditized by the rest of the market.
At some level this situation was inevitable, as more and more companies offload their fab capability to TSMC, that gives more and more money for TSMC to invest in boosting their capability, and of course while their margins are a lot less than Intel's with enough money that advantage goes away as well.
Intel's instruction set architecture dominance will keep it going for a long time but ultimately it would probably make sense for Intel to spin off its fabs into the US equivalent of TSMC and capture more margin revenue from their designs versus their process.
Intel's advantage over AMD has been it's (1) manufacturing technology and (2) architecture, especially since Sandy Bridge.
It turns out that Intel's architecture cheated by skipping privilege checks during speculation, while AMD designs did the correct thing. SMT turns out to be a security nightmare, but in any event AMD now offers the same capability. Either way SMT is another lost advantage.
That leaves Intel's process technology and vertical integration. If it outsources manufacturing it will have effectively ceded these completely, meaning Intel will have lost all of its competitive advantages.
I suppose Intel's human capital might be a competitive advantage, but their missteps cast serious doubt on that.
50.9% on 32B$ for TSMC[1] vs 62.3% on 62.7B$ for Intel[2]
That is closer than I expected it to be. In terms of actual cash (if you are wondering) Intel ended last year with $22B more of it than TSMC did.
[Disclaimer I own a small amount of Intel in my IRA account]
If you have ever been in an investment club (basically friends who get together and exchange ideas on what stocks to invest in) you have probably had the 'revenue/income' discussion.
Amazon is the poster child for 'net income doesn't matter' as it has reinvested most of its margin in itself over the years to grow.
So it can go either way.
TSMC does pay a dividend which Intel doesn't so from a financial trading/investing point of view you could argue that TSMC is a better stock to hold long as it will generate income.
From the 'future of the business' point of view re-investing more would seem to be the wiser strategy. Time will tell.
The problem is I haven't seen any major results from Intel's investment for the past 4+ years. And I have no idea where are all of their R&D into. TSMC has been building more Fabs every single year, higher expenditure, while Intel has had little to no Fab capacity expansion ( Apart from the recent 14nm shortage ). In terms of CAPEX TSMC is only second to Samsung, but Samsung is the world largest DRAM and NAND maker.
In terms of roadmap TSMC has been extremely open about their progress all they way down to 3nm and has been executing to perfection. They take pride to be Apple's pure play Fab.
I do believe in re-investing for the future, the problem is I have trouble seeing that future from Intel. And their management has been lying for far too long doesn't bring me confidence.
From what I've heard their isolation has made their tech largely incompatible with external workflows. Similar to how mainframes are technically computers but the software is alien to most people. They don't even use the same names for common things.
That idea of Intel spinning off and developing it's own TSMC sounds great! What other factors have prohibited from someone else developing a more viable TSMC competitor in the US?
The idea isn't exactly unique, in that AMD did it and called it Global Foundries(GF)[1]. Then in 2015 IBM divested their foundry capabilities and sold them to GF as well. It hasn't been a stellar experiment which is largely laid at the feet of the challenge of managing that business.
There realy should be some kind of ISO about node naming.
I guarantee this "5nm" would be as much missleading as their "7nm".
Only thing that matters is wafer price, yield, transistor count and TDP.
So the node scaling was standardized (before ~28nm). It very literally meant MOSfet density (as 28 nm was 1 MOSfet + gap for the next MOSfet). The IEEE had a road map about what to expect out of X sized components, and when those components would be out base on historical data.
But when we hit 20/18/16/14nm that went out the window and it became a marketing term, not so much a literal description. A lot of this was driven by moving to FINfet's which are really MOSfets, as they have lower leakage at smaller sizes, but they also aren't square which makes generalizing a singular node to density a bit wonky.
Yea for consumers these days, the physical size really doesn't matter much at all. ICs are small enough, nobody's looking forward to 5nm because of the physical size. What matters is cost and electric power usage.
The density improvements from 5nm absolutely matter and that comes from being smaller. If I can fit the functionality from two chips on one chip I save significant space on my board. Especially if the size of my chip is defined by the beachfront available for escaping IO. Not to mention all the supporting components required for each chip. And with half the chip turned off I can finally handle the power/heat issues.
We care about the TDP, which can be improved in various ways, not just moving to 5nm. Physical size in a phone or whatever is small enough, we don't care about smaller chips. The amount of space saved is negligible.
Well, you can fight the power monster with dark silicon.
Packing things in more tightly lets you spend less time in transit, which might let you squeeze more gates into a cycle, or do the same things a little faster.
I always wondered why... I mean I understand the processes will be different for each vendor, but shouldn't 1nm the same for all vendors?
They might use different technologies to achieve it but it should be a measuring unit...
What is the actual difference between Intel and everybody else as to count 10 Intel nm < 7 TSMC nms?
Maybe it's easy to find out in google but cant find the correct combination of keywords...
short answer is there are many parts with sizes in different dimensions x/y/z so what dimension do you measure or average to come up with a final "nm" rating for your cpu?
It was rumored TSMC's 7nm wouldn't be the same as Intel's 10nm. But if they reach ~5nm then they'll likely be knocking on Intel's 10nm door. Combined with the double whammy of 7nm Eypc servers from AMD it seems like Intel's technical offerings are rapidly getting commoditized by the rest of the market.